- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Arain, M Altaf (2)
-
Bahn, Michael (2)
-
Blanken, Peter D. (2)
-
Bohrer, Gil (2)
-
Bowling, David R. (2)
-
Munger, J William (2)
-
Richardson, Andrew D. (2)
-
Smith, Kenneth R. (2)
-
Ueyama, Masahito (2)
-
Anderegg, William RL (1)
-
Arain, M. Altaf (1)
-
Barr, Alan G. (1)
-
Bernhofer, Christian (1)
-
Black, T Andrew (1)
-
Black, T. Andrew (1)
-
Blanken, Peter D (1)
-
Bourque, Charles P.A. (1)
-
Bowling, David R (1)
-
Bracho, Rosvel (1)
-
Burns, Sean P (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Ran; Bowling, David R.; Gamon, John A.; Smith, Kenneth R.; Yu, Rong; Hmimina, Gabriel; Ueyama, Masahito; Noormets, Asko; Kolb, Thomas E.; Richardson, Andrew D.; et al (, Agricultural and Forest Meteorology)
-
Bowling, David R.; Schädel, Christina; Smith, Kenneth R.; Richardson, Andrew D.; Bahn, Michael; Arain, M Altaf; Varlagin, Andrej; Ouimette, Andrew P.; Frank, John M.; Barr, Alan G.; et al (, Journal of Geophysical Research: Biogeosciences)Abstract We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPPand EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity ∼3 weeks before end of snowmelt, while DBF forests achieved that capacity ∼4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d−1) than ENF (1.10% d−1), and their active season length (EndGPP–StartGPP) was ∼50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long‐term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP(1.3–2.5 days °C−1) or later EndGPP(1.5–1.8 days °C−1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPPand EndGPP. For ENF forests, air temperature‐ and daylength‐based models provided best predictions for StartGPP, while a chilling‐degree‐day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPPand EndGPPwere 11.7 and 11.3 days, respectively. For DBF forests, temperature‐ and daylength‐based models yielded the best results (RMSE 6.3 and 10.5 days).more » « less
An official website of the United States government
